PU M Sc 5 Year Int Prog Mathematics, Computer Science and Statistics
1 of 100
128 PU_2015_384
If $f(x)=a x+b$ and $g(x)=c x+d$ then $f(g(x))=g(f(x))$ if and only if:-
Ef(d)=g(b)
E $\quad \mathrm{f}(\mathrm{b})=\mathrm{g}(\mathrm{b})$
E $f(a)=g(c)$
[
$f(c)=g(a)$
2 of 100
161 PU_2015_384
The difference between the greatest and least values of the function
$f(x+y)=\cos x+\frac{1}{2} \cos 2 x-\frac{1}{3} \cos 3 x$ is:-
[
3/8
[B/7 $^{\text {B }}$
E 2/3
E $_{9 / 4}$
3 of 100
201 PU_2015_384
If A and B are skew symmetric matrices then:-
[AB is skew symmetric
[$A B$ is equal to $B A$
C $A B$ is equal ($B A)^{\prime}$, the transpose of $B A$
[$A B$ is symmetric
4 of 100
112 PU_2015_384
Let $f(x)=\left\{\begin{array}{ll}x^{2}+1 & \text { if } x \geq 0 \\ A \sin x+B \cos x & \text { if } x<0\end{array}\right.$. For what values of A and B, f is differentiable at $x=0$.
$E_{1,1}$
E $0,-1$
[0,1
E 0,any real number
5 of 100
173 PU_2015_384
If $\arg (z)<0$, then $\arg (-z)-\arg (z)$ is

```
E }\frac{\pi}{2
C}
C - - 
C
6 of 100
120 PU_2015_384
    The system of homogeneous equations:
                        (a-1)x+(a+2)y+az=0
                    (a+1)x+ay+(a+2)z=0
                ax+(a+1)y+(a-1)z=0
    has a non-trivial solution if a equals
C -1
[ 1/2
C -1/2
E 2
7 of 100
124 PU_2015_384
Let R be a relation on the set of positive numbers defined as : }x\mathrm{ related y if 2x+y=35. Then R is:-
E Symmetric
E Transitive
C Reflexive
E none of these
8 of 100
134 PU_2015_384
In how many ways is it possible to make 7 persons A, B, C, D, E, F, G sit at a round table if C, D, G insist
on sitting together?
C 3.4!
    7!
L
E
    3!5!
E 
9 of 100
```

225 PU_2015_384
Let A and B be sets such that $|A|=m$ and $|B|=n$. The set of all functions from A to B is denoted by B^{A}. Then $\left|B^{A}\right|=$
[
mn
C ${ }^{\mathrm{m}}$
[${ }_{\mathrm{n}} \mathrm{m}^{2}$
E
$m+n$
10 of 100
171 PU_2015_384
The complex number z is such that $|z|=1,|z| \neq 1$ and $w=\frac{z-1}{z+1}$, then real part of w is:-
E_{0}
E $\frac{\sqrt{2}}{|z+1|^{2}}$
-

$$
\frac{-1}{|z+1|^{2}}
$$

E

$$
\frac{1}{|z+1|^{2}}
$$

E
11 of 100
194 PU_2015_384
The radius of the circle in which the sphere $x^{2}+y^{2}+z^{2}+2 x-2 y-4 z-19=0$ is cut by the plane $x+2 y+2 z+7=0$ is:-
E_{1}
D_{4}
D_{2}
E_{3}
12 of 100
195 PU_2015_384
The number of bijections from a set containing 20 elements to itself is:-
E 20^{2}
[20
E 20!
E 2^{20}
13 of 100
118 PU_2015_384

The solution of the equation $\frac{d^{3} y}{d x^{3}}-3 \frac{d^{2} y}{d x^{2}}+3 \frac{d y}{d x}-y=0$ is $y=$?

$$
e^{x}\left(c_{1} x^{2}+x\left(c_{2}+c_{3}\right)\right)
$$

[

$$
e^{x}\left(c_{1} x^{2}+c_{2}\right)
$$

$$
e^{x}\left(c_{1} x^{2}+c_{2} x+c_{3}\right)
$$

$$
e^{2 x}\left(c_{1} x^{2}+c_{2} x+c_{3}\right)
$$

14 of 100
223 PU_2015_384
Which of the following is correct?
E $\left(a^{*} b\right)^{-1}=a^{-1} * b^{-1}$ for all a, b in a group G
L If every element of a group is its own inverse, then the group is abelian
[
An element of a group can more than one inverse
T The set of all 2×2 real matrix forms a group under matrix multiplication
15 of 100
140 PU_2015_384
The equation of the line tangent to the curve $y=x^{3}+1$ at the point $(1,2)$ is:-
E $\mathrm{E}=2 \mathrm{x}$
[$y=3 x+1$
[
$y=x+1$
[
$y=3 x-1$
16 of 100
133 PU_2015_384
A line makes an angle of 60° with each of x and y axis, the angle which it makes with z axis is
[
90°
E 30°
E 45°
E 60°
17 of 100
145 PU_2015_384
The distance of that point on $y=x^{4}+3 x^{2}+2 x$ which is nearest to the line $y=2 x-1$ is:-
$C^{\frac{3}{\sqrt{5}}}$
$C^{\frac{2}{\sqrt{5}}}$
$C^{\frac{1}{\sqrt{5}}}$
[$\frac{4}{\sqrt{5}}$

18 of 100

179 PU_2015_384
If the polar equation of a curve is $r=1-2 \sin \theta$, for $0 \leq \theta \leq 2 \pi$. Find the Cartesian coordinate corresponding to $\theta=\frac{3 \pi}{2}$.
E
(0,-3)
[$\mathbf{D}_{(1,3)}$
[$\mathbf{D}_{(0,3)}$
[${ }_{(1,-3)}$
19 of 100
116 PU_2015_384
On straight road XY, 100 meters long, five heavy stones are placed two meters apart beginning at the end X . A worker, starting at X , has to transport all the stones to Y , by carrying only one stone at a time. The minimum distance he has to travel (in meters) is:-
E
744
[
422
[472
[860
20 of 100
143 PU_2015_384
The image of the interval $[-1,1]$ under the map $f(x)=\frac{|x+1|}{2}+1$ is:-
E [1,2]
E $[0,1]$
E
[-1,1]
[${ }_{[1,3]}$
21 of 100
246 PU_2015_384

If $\Delta_{1}=\left|\begin{array}{lll}x & b & b \\ a & x & b \\ a & a & x\end{array}\right|$ and $\Delta_{2}=\left|\begin{array}{ll}x & b \\ a & x\end{array}\right|$, then:-
$\mathbf{C}^{\frac{d}{d x}\left(\Delta_{1}\right)=3 \Delta_{2}{ }^{2}}$
[$\Delta_{1}=3\left(\Delta_{2}\right)^{2}$
C $\Delta_{1}=3\left(\Delta_{2}\right)^{3 / 2}$
$\mathbb{C}^{\frac{d}{d x}\left(\Delta_{1}\right)=3 \Delta_{2}}$

22 of 100

163 PU_2015_384
Adjacent sides of a parallelogram are 36 cm and 27 cm in length. Fl the perpendicular distance between the shorter side is 12 cm which is the distance between the longer side?
E 16
E ${ }_{9}$
[12
E 18

23 of 100

191 PU_2015_384
If $\left(l_{1}, m_{1}, n_{1}\right)$ and $\left(l_{2}, m_{2}, n_{2}\right)$ represent the direction cosines of two lines which are perpendicular then:-

C $\quad l_{1} l_{2}+m_{1} m_{2}+n_{1} n_{2}=0$
[$\frac{l_{1}}{l_{2}}=\frac{m_{1}}{m_{2}}=\frac{n_{1}}{n_{2}}$
[$\quad l_{1} l_{2}+m_{1} m_{2}+n_{1} n_{2}=1$
[$\left(l_{1}+m_{1}+n_{1}\right)\left(l_{1}+m_{1}+n_{1}\right)=0$

24 of 100

237 PU_2015_384
$\int_{-2}^{2}|1-x| d x=$
E_{3}

[0

[${ }_{2}$
[5
25 of 100
136 PU_2015_384
The ratio in which the plane $2 x-1=0$ divides the line joining $(-2,4,7)$ and $(3,-5,8)$ is:-
$\mathrm{C}_{4: 5}$
[$7: 8$
[${ }_{2: 3}$
C $1: 1$
26 of 100
200 PU_2015_384
If A is an orthogonal matrix and if the transpose of A is denoted as A^{\prime} then $A A^{\prime} A$ equals to:-
E
I , identity matrix
[0 matrix
[${ }_{A}$
[
27 of 100
184 PU_2015_384
If $r=5 z$ then $15 z=3 y$, then $r=$
E 5 y
E $2 y$
E ${ }^{\text {y }}$
[10
28 of 100
207 PU_2015_384
Let $f(x)=\frac{\sqrt{\tan x}}{\sin x \cos x}$ and $\mathrm{F}(\mathrm{x})$ is its antiderivative. If $\mathrm{F}(\pi / 4)=6$, then $\mathrm{F}(\mathrm{x})$ is equal to:-
[$2(\sqrt{\tan x}+1)$
[$2(\sqrt{\tan x}+3)$
C $2(\sqrt{\tan x}+4)$
$C^{2(\sqrt{\tan x}+2)}$

29 of 100

242 PU_2015_384

For what value of $\alpha, 81^{\sin ^{2} \alpha}+81^{\cos ^{2} \alpha}=30^{\circ}$?
(a) $n \pi \pm(-1)^{n \frac{\pi}{3}}$

E
(b) $n \pi \pm(-1)^{n} \frac{\pi}{6}$

E
(c) Both (a) and (b)

E
(d) $\pi / 2$

30 of 100
196 PU_2015_384
If A and B are subsets of E having same number of elements then:-
C $|\mathrm{A}| \mathrm{B}|=|\mathrm{BA}|$
C $\left|A \cup B^{\prime}\right|=|A|$
C $\left|A \cap B^{\prime}\right|=|A|$
C $|A \cup B|=|A \cap B|$
31 of 100
213 PU_2015_384
The value of $\int_{0}^{\pi^{2} / 4} \sin \sqrt{x} d x$ is:-
E_{1}
D_{3}
E 0
E 2
32 of 100
243 PU_2015_384
If the side lengths a, b and c of a triangle $A B C$ are in Arithmetic Progression (A.P.), then find the value of $\cos \frac{1}{2}(\mathrm{~A}-\mathrm{C})$?
E
$\cos B$ $\sin \frac{B}{2}$
E
$2 \sin \frac{B}{2}$
E

None of these

33 of 100

209 PU_2015_384
If M and N are positive integers where $\sqrt{M N}=8$, then which of the following can not be the value of $\mathrm{M}+\mathrm{N}$
E
20
E
16
[6
[35
34 of 100
149 PU_2015_384
A binary operation on A is a function from:-

$$
\begin{aligned}
& \mathrm{E} \quad A \times A \rightarrow A \times A \\
& \mathrm{E} \\
& \mathrm{~A} \\
& \mathrm{E} \\
& \mathrm{~A} A \rightarrow A \times A \\
& \mathrm{E}
\end{aligned}
$$

35 of 100

181 PU_2015_384
The y coordinates of all the points of intersection of the parabola $y^{2}=x+2$ and the circle $x^{2}+y^{2}=4$ are given by:-
E $0, \sqrt{3},-\sqrt{3}$
[${ }_{0,3,-3}$
[$0,2,-2$
[$0,1,-1$

36 of 100

199 PU_2015_384
Let A and B are two $n \times n$ matrices.
i) $\mathrm{AB}=0$ implies either $\mathrm{A}=0$ or $\mathrm{B}=0$
iii) $A B=I$, the identity matrix then $A^{-1}=B$ and $B^{-1}=A$
iii) $(A+B)^{2}=A^{2}+2 A B+B^{2}$
E i), ii) and iii) are true
E i) and iii) are not true but ii) is true
E i) is not true ii)and iii) are true
E ii) is not true but i) and iii) are true

147 PU_2015_384
The value of the integral $\int_{-1}^{1} x^{10} \sin x d x$ is:-
[${ }_{2 \pi}$
E
E ${ }_{1}$
E_{π}
38 of 100
221 PU_2015_384
If A and B are any two matrices such that $A B=0$ and A is nonsingular, then:-
$E_{B=A}$
$E_{B=0}$
E B is non singular
E B is orthogonal
39 of 100
177 PU_2015_384
If $\log _{x}\left(\frac{1}{8}\right)=-\frac{3}{4}$, then $x=$
E
16
[32
C_{4}
${ }^{[} 8$
40 of 100
126 PU_2015_384
In a group of 100 people who drink either tea or coffee, 55 people drink coffee and 67 people drink tea.
Then the number of people who drink tea but not coffee is:-
E_{33}
[12
[22
[45
41 of 100
138 PU_2015_384
The value of $\lim _{x \rightarrow 0} \frac{\log (1+x)^{1+x}-x}{x^{2}}$ is:-
E_{1}

42 of 100
228 PU_2015_384
The point of the curve $y=x^{2}$ that is closest to $\left(4, \frac{-1}{2}\right)$ is:-
$\mathrm{E}_{(1,1)}$
[$\mathbf{D}_{(2,4)}$
[$\left(\frac{2}{3}, \frac{4}{9}\right)$
C $\left(\frac{4}{3}, \frac{16}{9}\right)$
43 of 100
131 PU_2015_384
The total number of permutations of $n(>1)$ different things taken not more that r at a time, when a thing may be repeated any number of times, is:-

$$
\frac{n}{n-1}\left(n^{\gamma}-1\right)
$$

E

$$
\frac{n^{\gamma}+1}{n-1}
$$

E

$$
\frac{n^{\gamma}+1}{n+1}
$$

E

$$
\frac{n^{\gamma}-1}{n-1}
$$

44 of 100

192 PU_2015_384
How many ways can five cards be selected from a standard deck of 52 playing cards such that all are of the same suit?

$$
\binom{4}{1}\binom{13}{5}
$$

E

E
$\binom{52}{4}$
E
E none of these

45 of 100

197 PU_2015_384
Let L be the set of all lines in a plane and R be a relation on L defined by $a b$ if and only if a is perpendicular to b. Then R is:-
E transitive
E
reflexive
C transitive but not symmetric
E symmetric

46 of 100
198 PU_2015_384
If $n(A)=3$ and $n(B)=5$ then the number of one to one functions we can define from A to B is:-
[60
E 30
[243
[10
47 of 100
152 PU_2015_384
If Let $G=\left\{\left.\left(\begin{array}{ll}x & x \\ x & x\end{array}\right) \right\rvert\, x\right.$ in $\left.R^{*}\right\}$. Under the matrix multiplication G is:-
$\left[\right.$ group with $e=\left(\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right)$
E abelian group
E not a group
E
non abelian group
48 of 100
101 PU_2015_384
If $N=1421 \times 1423 \times 1425$, what is the reminder when N is divided by 12 ?
E 0
E_{3}

E 9
[6
49 of 100
103 PU_2015_384
The sum and product of the roots of $x^{4}-x^{3}-3 x-2=0$ are respectively:-
[
$-1,-2$
[${ }^{1,2}$
[B $_{1,-2}$
[${ }_{-1,2}$
50 of 100
158 PU_2015_384
The set onto which the derivative of the function $f(x)=x \log x-x$ maps the ray $[1, \infty)$ is:-
[$[1, \infty)$
C $[0, \infty)$
[$(0, \infty)$
$\mathbb{C}^{(2, \infty))}$
51 of 100
204 PU_2015_384
If f and g are two functions such that $f^{\prime}=g$ and $g{ }^{\prime}=f$ for all x then
[f-g is a constant
[$f^{3}-g^{3}$ is a constant
E fg is a constant
[$f^{2}-g^{2}$ is a constant
52 of 100
202 PU_2015_384
If A, B and C are three square matrices of the same order, such that whenever $A B=A C$ then $B=C$ if A
is:-
[
symmetric
[skew symmetric
E
singular
E non-singular
53 of 100
156 PU_2015_384

The rank of the matrix $\left(\begin{array}{llll}1 & 0 & 2 & 1 \\ 0 & 2 & 4 & 2 \\ 0 & 2 & 2 & 1\end{array}\right)$ is:-
E 3
E ${ }_{1}$
E_{2}
E
54 of 100
234 PU_2015_384
Let $f: R \rightarrow R$ be a function defined by $f(x)=\min \{x+1,|x|+1\}$. Then which of the following is true?
E f is differentiable everywhere.
■ f is differentiable at $x=0$
C f is not differentiable at $\mathrm{x}=1$
E $f(x) \geq 1$ for all $x \in R$
55 of 100
211 PU_2015_384
Let $f(x)=\int_{1}^{x} \sqrt{2-t^{2}} d t$. Then the real roots of the equation $x^{2}-f^{\prime}(x)=0$ are:-
E ± 1
E 0 and 1
[$\frac{ \pm 1}{\sqrt{2}}$
$\frac{ \pm 1}{2}$

56 of 100
189 PU_2015_384
The number of ways in which we can arrange the digits $1,2,3, \ldots, 9$ such that the product of five digits at any of the five consecutive positions is divisible by 7 is:-
E 7!
E $\mathrm{P}(9,7)$
[${ }^{5(7!)}$
$\mathrm{C}_{8!}$

57 of 100

105 PU_2015_384
Solve for x : $9^{x}-3^{x}-8=0$

$$
\log _{3}\left(\frac{1+\sqrt{33}}{2}\right)
$$

E

```
            \(\log _{3}\left(\frac{1 \pm \sqrt{33}}{2}\right)\)
E
    \(\log _{3}\left(\frac{1}{4}\right)\)
    \(\log _{3}\left(\frac{1}{2}\right)\)
E
```

58 of 100
239 PU_2015_384
If $A: B: C=1: 2: 3$, then $\sin A: \sin B: \sin C=$?
(1:2:3
($1: \sqrt{3}: 2$
(C) $\sqrt{3}: 1: 2$
[$1: 2: \sqrt{3}$
59 of 100
165 PU_2015_384
If z and w be two complex numbers such that $|z| \leq 1,|w| \leq 1$ and $|z+i w|=|z-i w|=2$ then z equals:-
E ior-i
E 1 or-1
E ior-1
[${ }_{1 \text { ori }}$
60 of 100
185 PU_2015_384
If a plane meets the coordinates axes in A, B, C such that the centroid of the triangle is the point $\left(1, r, r^{2}\right)$,
then equation of the plane is:-
E $x+r y+r^{2} z=3 r^{2}$

E
$r^{2} x+r y+z=3$
[$\quad x+r y+r^{2} z=3$
[$r^{2} x+r y+z=3 r^{2}$

61 of 100

114 PU_2015_384
A and B can do a piece of work in 72 days; B \& C can do the same work in 120 days; A and C can do it in 90 days. In what time can A alone do it?
E 100 days
[90 days
E 120 days
E 150 days
62 of 100
109 PU_2015_384
Evaluate $\int_{0} \cos ^{2 n+1} x d x$
[$2 \pi+1$

$$
\frac{\pi}{2 n+1}^{2 n+1}
$$

[
E 0
C $\frac{\pi^{2 n+1}}{2}$
63 of 100
219 PU_2015_384

$$
a * b=\frac{a b}{2}
$$

Pick out false statement. In the set of even integers E define
E * is a binary operation
E Ehas identity 1
E * is associative
E * is commutative
64 of 100
175 PU_2015_384
If $x y^{m}=y x^{3}$, then solve for m.
[$2 \log _{x} y+1$
[$2 \log _{x} y$
E $2 \log _{y} x$
[$2 \log _{y} x+1$

65 of 100
130 PU_2015_384
Let $x_{1} x_{2} x_{3} x_{4} x_{5}=2310$, where $x_{1}, x_{2}, x_{3}, x_{4}, x_{5} \in Z$. Then the number of integral solution greater than one is:-
[${ }_{5}{ }^{5}$
E ${ }_{120}$
D 60
[${ }_{250}$
66 of 100
110 PU_2015_384
$\lim _{x \rightarrow 0} \frac{1-\cos x}{x}=$
E 0
E
E ${ }_{-1}$
E 1
67 of 100
217 PU_2015_384
The number of relations on a set with n elements is:-
E n^{2}
E ${ }_{2 n}$
E $2^{n^{2}}$
$\mathbb{E}_{2^{n}}$
68 of 100
170 PU_2015_384
What is $\sqrt{-6} \sqrt{-6}$?
E 6
[${ }_{-6 i}$
E 6
[${ }^{-6}$
69 of 100
122 PU_2015_384
If A and B are two subsets of a set E, then $(A \cup B)^{\prime} \cup\left(A^{\prime} \cap B\right)$ equals:-

```
E \emptyset
A
E
E
A'
```

70 of 100
203 PU_2015_384
If A and B are skew symmetric matrices then $A B-B A$ is:-
diagonal matrix
[
symmetric matrix
E
skew symmetric matrix
E
0 matrix
71 of 100
107 PU_2015_384
The value of $\cosh \left(\frac{i \pi}{2}\right)$ is:-
E 0
E_{1}
E
E
72 of 100
215 PU_2015_384
On straight road XY, 100 meters long, five heavy stones are placed two meters apart beginning at the
end X . A worker, starting at X , has to transport all the stones to Y , by carrying only one stone at a time.
The minimum distance he has to travel (in meters) is:-

E
472
[
422
E
744
[
860
73 of 100
154 PU_2015_384
If the matrix $\left(\begin{array}{ccc}-1 & 3 & 2 \\ 1 & n^{2} & -3 \\ 1 & 4 & 5\end{array}\right)$ has an inverse then the value of n
E $n \neq-4$.
E n is any real number
[
$n=-4$

74 of 100
168 PU_2015_384
The complex number z_{1}, z_{2} and z_{3} satisfying $\frac{z_{1}-z_{3}}{z_{2}-z_{3}}=\frac{1-l v 3}{2}$ are the vertices of a triangle which is:-
E Equilateral
E
Right angled isosceles triangle
E
Of area zero
E
Obtuse angle isosceles triangle
75 of 100
187 PU_2015_384
Distance between two parallel planes $2 x+y+2 z=8$ and $4 x+2 y+4 z+5=0$ is:-
[${ }^{5 / 2}$
E $_{7 / 2}$
E $_{3 / 2}$
[9/2

76 of 100

254 PU_2015_384
An urn contains 9 balls, two of which are red, three blue and four black. Three balls are drawn at random. The probability that they are of the same colour is:-
E
7/17
[${ }^{3 / 9}$
[
5/84
[
6/84
77 of 100
256 PU_2015_384
A player tosses two fair coins. He wins Rs. 5 if two Head occurs, Rs. 22 if one Head occurs and Rs. 1 if no head occurs. Then his expected value is:-
E
Rs. 35/2
E
Rs. 7/2
E
Rs. 27/2
E
Rs. 25/2
78 of 100
252 PU_2015_384
If two dice are thrown then the probability of getting a sum greater than 8 is:-

```
C
    11/36
E
    9/36
    10/36
[
    12/36
```

79 of 100
250 PU_2015_384
If A and B are any two events in a sample space. Then $P\left(A \cap B^{c}\right)$ is equal to:-

E
$P(A)-P(A \cup B)$
E $P(A)$
[
Zero
E
$P(A)-P(A \cap B)$
80 of 100
258 PU_2015_384
An urn contains 3 red, 5 black and 7 yellow balls. If a ball is selected at random, then the probability that the ball drawn is not yellow is:-
E 8/15
[7/15
[1/7
E
7/8
81 of 100
261 PU_2015_384
The probability density function of Normal distribution is:
$f(x)=\frac{2 \sqrt{2}}{\sqrt{\pi}} e^{-2(2 x-1)^{2}} ;-\infty<x<\infty$
Then the mean and variance are:-
E (1/3, 1/5)
E
(1/5, 1/3)
C (1/16, 1/2)
[(1/2, 1/16)

82 of 100
269 PU_2015_384
What is the shape of the frequency curve of Poisson distribution?
[Bath tub
E Symmetric
[
Negatively Skewed

83 of 100
263 PU_2015_384
Let X follow Normal distribution with mean 2 and variance $3[\mathrm{~N}(2,3)]$. Then $\mathrm{Y}=2 \mathrm{X}+3$ is:-
[$\mathrm{N}(7,24)$
E
$\mathrm{N}(7,17)$
E
$\mathrm{N}(7,22)$
E
$N(7,12)$
84 of 100
265 PU_2015_384
If X is a random variable with the following probability distribution, then $E\left(X^{2}\right)=$

$\mathrm{X}:$	-3	0	6	9
$\mathrm{P}(\mathrm{X})$	$1 / 6$	0	$1 / 2$	$1 / 3$

E 45/4
[D $_{90 / 3}$
[
45/93
E
93/2
85 of 100
267 PU_2015_384
Mean and Variance are equal for the following probability distribution:-
E
Poisson
C
Binomial
E
Normal
E Uniform

86 of 100
274 PU_2015_384
A continuous random variable has the following p.d.f.
$F(x)=3 x^{2} ; 0 \leq x \leq 1$
If $P(X \leq a)=P(X>a)$, then the value of a^{3} is:-
E
$1 / 8$
[${ }_{1 / 2}$
[${ }_{1 / 4}$
[${ }_{1 / 16}$
87 of 100
272 PU_2015_384

Given $\operatorname{Var} X_{1}=4$, $\operatorname{Var} X_{2}=2$ and $\operatorname{Var}\left(X_{1}+2 X_{2}\right)=32$, then $\operatorname{Cov}\left(X_{1}, X_{2}\right)$ is equal to:-
[${ }_{4}$
[${ }_{6}$
[${ }_{2}$
[5

88 of 100

271 PU_2015_384
If X is a random variable having the probability density function

$$
f(x)=\left\{\begin{array}{l}
\frac{1}{3} e^{-\frac{x}{3}} \quad ; x>0 \\
0 \text { otherwise }
\end{array}\right.
$$

then $P(X>3)$ is:-
[${ }_{1 / e^{2}}$
[E $_{1 / 3}$
$\boldsymbol{E}_{1 / \mathrm{e}}$
[0.75
89 of 100
276 PU_2015_384
The mean of 5 observations is 4.4 and their variance is 8.24 . If three of the observations are 1,2 and 6 , then the other two observations are:-
[${ }^{(3,10)}$
[${ }^{(7,6)}$
[$(8,5)$
E (4, 9)
90 of 100
278 PU_2015_384
The variance of first n natural numbers is

E

$$
\left(n^{2}+1\right) / 12
$$

$(n+1)^{2} / 12$
$\mathbf{C}^{\left(n^{2}-1\right)} / 12$
$\mathbf{C}^{\left(2 n^{2}-1\right) / 12}$
91 of 100

283 PU_2015_384
A lot of 10 items contains 3 defective items. A sample (without replacement) of 4 items is drawn at random. Let X denote the number of defective items in the sample. The $P(X \leq 1)$ is:-

```
L
    1/2
[
    1/3
[
    3/10
[
    2/3
```

92 of 100
285 PU_2015_384
If M_{d}, Q, D and P stand for median, quartile, decile and percentile respectively, then which of the
following relation between them is true?
[
$M_{d}=Q_{2}=D_{6}=P_{50}$
C
$M_{d}=Q_{3}=D_{5}=P_{75}$
[
$M_{d}=Q_{2}=D_{5}=P_{50}$
E
$M_{d}=Q_{2}=D_{4}=P_{50}$
93 of 100
281 PU_2015_384
The sum of 10 items is 12 and the sum of their squares is 16.9. The standard deviation is:-
[0.4
[
0.6
E
0.5
E
0.3
94 of 100
287 PU_2015_384
The median of the values $48,35,36,40,42,54,58,60$ is:-
E
41
E
45
E 40
E
44

95 of 100

288 PU_2015_384
The formula for calculating coefficient of variation (C.V.) is:-
E
C.V. $=($ Mean x Standard deviation $) / 100$

E
C.V. $=(100) /($ Mean x Standard deviation)

E
C.V. $=($ Standard deviation $/$ Mean $) \times 100$

E
C. $V=($ Mean $/$ Standard deviation $) \times 100$

96 of 100
295 PU_2015_384
If $a+b=3(c+d)$, which one of the following is the average of a, b, c and d ?
[
$c+d / 4$
L $3(c+d) / 4$
[
$3(c+d) / 8$
E
$c+d$
97 of 100
298 PU_2015_384
The data given as $5,7,12,17,79,84,91$ will be called as:-
L A discrete series
[Time series
[An individual series
[. A continuous series
98 of 100
291 PU_2015_384
WATER SUPPLY TO BQMBAYZ CITY

Total water supply in $1992=7200$ Million gallons per month
The total water supplied by "others" in 1992 (in m. gallons)is:-
E 1728
[1656
[19872
[19008

99 of 100

296 PU_2015_384
Given that in a code language, ' 645 ' means 'day is warm', ' 42 ' means 'warm spring' and ' 634 ' means 'spring in sunny' which digit represents 'sunny'?
L_{2}
E_{3}
E 5
[4
100 of 100
293 PU_2015_384

BIRTH AND DEATH RATES

(per 1000 population as at the beginning of the year)

Population at the beginning of $1987=75$ Crores)
What is the population at the beginning of 1989 ?
[$76,44,24,500$
E
76,16,28,000
[76,28,02,500
C
75,52,50,000

